134 research outputs found

    Crustal and mantle velocity models of southern Tibet from finite frequency tomography

    Get PDF
    Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite‐frequency tomographic inversions to image the three‐dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively high P and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high‐velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong‐Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate‐depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite‐eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north‐dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north‐south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya

    High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions

    Get PDF
    The Q of regional seismic phases Lg and Pg within the crust is assumed as a proxy for crustal Qβ and Qα, which is used as a constraint of crustal rheology. We measure regional‐phase Q of the eastern Tibetan Plateau and adjacent areas. This method eliminates contributions from source and site responses and is an improvement on the Two‐Station Method (TSM). We have generated tomographic images of crustal attenuation anomalies with resolution as high as 1°. In general we observe low Q in the northernmost portions of the Tibetan Plateau and high Q in the more tectonically stable regions such as the interior of the Qaidam basin. The calculated site responses appear to correlate with topography or sediment thickness. Furthermore the relationship between earthquake magnitudes and calculated source terms suggest that the RTM method effectively removes the source response and may be used as an alternative to source magnitude

    Private-Library-Oriented Code Generation with Large Language Models

    Full text link
    Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights

    Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats

    Get PDF
    Umbilical cord mesenchymal stem cells (UCMSCs) are a reportedly promising choice in the treatment of irreversible pulmonary fibrosis and lethal interstitial lung disease with limited drug treatment options. In this study, we investigated the therapeutic efficacy of UCMSCs overexpressing hepatocyte growth factor (HGF), which is considered one of the main anti-fibrotic factors secreted by MSCs. Adenovirus vector carrying the HGF gene was transfected into UCMSCs to produce HGF-modified UCMSCs (HGF-UCMSCs). Transfection promoted the proliferation of UCMSCs and did not change the morphology, and differentiation ability, or biomarkers. Rats were injected with HGF-UCMSCs on days 7 and 11 after intratracheal administration of bleomycin (10 mg/kg). We performed an analysis of histopathology and lung function to evaluate the anti-fibrotic effect. The results showed that HGF-UCMSCs decreased the Ashcroft scores in hematoxylin and eosin-stained sections, the percentage positive area in Masson trichrome-stained sections, and the hydroxyproline level in lungs. Forced expiratory volume in the first 300 m/forced vital capacity was also improved by HGF-UCMSCs. To explore the possible therapeutic mechanism of HGF-UCMSCs, we detected inflammatory factors in the lungs and performed mRNA sequencing in UCMSCs and HGF-UCMSCs. The data indicated that inhibition of interleukin-17 in the lung may be related to the anti-fibrosis of HGF-UCMSCs, and overexpressed HGF probably played a primary role in the treatment. Collectively, our study findings suggested that the overexpression of HGF may improve the anti-fibrotic effect of UCMSCs through directly or indirectly interacting with interleukin-17-producing cells in fibrotic lungs

    High Yield and Packing Density Activated Carbon by One-Step Molecular Level Activation of Hydrophilic Pomelo Peel for Supercapacitors

    Get PDF
    Highly hydrophilic pomelo peel is used as an activated carbon (AC) precursor so that KOH can be homogeneously absorbed within it. Subsequent cryodesiccation retains the original morphology of the pomelo peel and distribution of KOH, which provides the precondition of the one-step molecular level activation. The resulting AC has a high yield of 16.7% of the pomelo peel. The specific surface area of the AC prepared by the one-step molecular activation of cryodesiccated mixture of pomelo peel and KOH (CAC-1) is 1870 m2 g-1, which is higher than that of the AC by the one-step activation of oven-dried mixture (AC-1) and AC by the two-step calcination (AC-2). CAC-1 has the highest specific capacitance of 219 F g-1 at 1 A g-1 among all the three samples. Importantly, the CAC-1 electrode has a high packing density of 0.63 g cm-3. The aqueous supercapacitor based on CAC-1 has a volumetric cell capacitance of 30.7 F cm-3, which corresponds to 123 F cm-3 for a single electrode. When the ionic liquid of 1-ethyl-3-methyl-imidazolium tetrafluoroborate is used as electrolyte, CAC-1 shows maximum specific energy of 40.5 Wh kg-1 and energy density of 25.5 Wh l-1

    Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana

    Get PDF
    Ascorbate (AsA) is a redox buffer and enzyme cofactor with various proposed functions in stress responses and growth. The aim was to identify genes whose transcript levels respond to changes in leaf AsA. The AsA-deficient Arabidopsis mutant vtc2-1 was incubated with the AsA precursor L-galactono-1,4-lactone (L-GalL) to increase leaf AsA concentration. Differentially expressed genes screened by DNA microarray were further characterized for AsA responsiveness in wild-type plants. The analysis of 14 candidates by real-time PCR identified an aspartyl protease gene (ASP, At1g66180) and a C3HC4-type RING zinc finger gene (AtATL15, At1g22500) whose transcripts were rapidly responsive to increases in AsA pool size caused by L-GalL and AsA supplementation and light. Transgenic Arabidopsis plants expressing an AtATL15 promoter::luciferase reporter confirmed that the promoter is L-GalL, AsA, and light responsive. The expression patterns of ASP and AtATL15 suggest they have roles in growth regulation. The promoter of AtATL15 is responsive to AsA status and will provide a tool to investigate the functions of AsA in plants further

    Beclin-1 Expression is a Predictor of Clinical Outcome in Patients with Esophageal Squamous Cell Carcinoma and Correlated to Hypoxia-Inducible Factor (HIF)-1α Expression

    Get PDF
    In the present study, we examined the relationship between Beclin-1 expression and HIF-1α expression in esophageal squamous cell carcinoma(ESCC). There was a loss of Beclin-1 protein expression in 33% of ESCCs. Beclin-1 expression significantly correlated with depth of invasion, lymph node metastasis and clinical stage. Among the 54 patients, The survival rate of the Beclin-1-positive group was better than that of the Beclin-1-negative group. Twenty-five of the 54 (46%) tumor specimens showed high levels of HIF-1α immunoreactivity. Beclin-1 expression was associated with HIF-1α expression. The survival rate of patients with Beclin-1-positive and HIF-1α-low tumors was significantly higher than that of the other groups. These results suggest that Beclin-1 and HIF-1α expression are important determinants of survival in ESCCs

    Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q0AE02, doi:10.1029/2010GC003402.Gravity-derived crustal thickness models were calculated for the North Atlantic Ocean between 76°N and the Chain Fracture Zone and calibrated using seismically determined crustal thickness. About 7% of the ocean crust is 7 km thick and is interpreted to have been affected by excess magmatism. Thin crust probably reflects reduced melt production from relatively cold or refractory mantle at scales of up to hundreds of kilometers along the spreading axis. By far the most prominent thick crust anomaly is associated with Iceland and adjacent areas, which accounts for 57% of total crustal volume in excess of 7 km. Much smaller anomalies include the Azores (8%), Cape Verde Islands (6%), Canary Islands (5%), Madeira (<4%), and New England–Great Meteor Seamount chain (2%), all of which appear to be associated with hot spots. Hot spot–related crustal thickening is largely intermittent, suggesting that melt production is episodic on time scales of tens of millions of years. Thickened crust shows both symmetrical and asymmetrical patterns about the Mid-Atlantic Ridge (MAR) axis, reflecting whether melt anomalies were or were not centered on the MAR axis, respectively. Thickened crust at the Bermuda and Cape Verde rises appears to have been formed by isolated melt anomalies over periods of only ∼20–25 Myr. Crustal thickness anomalies on the African plate generally are larger than those on the North American plate; this most likely results from slower absolute plate speed of the African plate over relatively fixed hot spots.Supported by a fellowship from the China Scholarship Council. Additional support for this research was provided by the Charles D. Hollister Endowed Fund for Support of Innovative Research at WHOI (JL) and NSF China grants 40676023 and 40821062 (YJC)

    Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe

    Get PDF
    Whole-genome duplication (WGD) plays important roles in plant evolution and function, yet little is known about how WGD underlies metabolic diversification of natural products that bear significant medicinal properties, especially in nonmodel trees. Here, we reveal how WGD laid the foundation for co-option and differentiation of medicinally important ursane triterpene pathway duplicates, generating distinct chemotypes between species and between developmental stages in the apple tribe. After generating chromosome-level assemblies of a widely cultivated loquat variety and Gillenia trifoliata, we define differentially evolved, duplicated gene pathways and date the WGD in the apple tribe at 13.5 to 27.1 Mya, much more recent than previously thought. We then functionally characterize contrasting metabolic pathways responsible for major triterpene biosynthesis in G. trifoliata and loquat, which pre- and postdate the Maleae WGD, respectively. Our work mechanistically details the metabolic diversity that arose post-WGD and provides insights into the genomic basis of medicinal properties of loquat, which has been used in both traditional and modern medicines
    corecore